VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. IV-Semester Main Examinations, July/August-2023

Principles of Data Structures

(Common to Civil & Mech. Engg.)

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question	M	L	CO	PC
1.	What is the node structure of circular linked list?	2	1	1	1
2.	What is Linear Data structure?	2	1	1	1,2
3.	What is stack underflow?	2	1	2	1
4.	In the queue, if front=x and rear =y (x \leq y) then the number of elements in the queue.	2	1	2	1,2
5.	Write an inorder traversal algorithm to traverse the binary tree.	2	2	3	1
6.	Write any four properties of binary tree.	2	1	3	1,2
7.	What is adjacency list representation of the graph?	2	1	4	1
8.	(B)	2	2	4	1,2
	(C) (F)	ents It			
	Represent above graph by using adjacency matrix.				
9.	Define time complexity. What is the worst case time complexity of selection sort?	2	1	5	1
10.	When can we perform binary search on given elements? Briefly outline the procedure.	2	1	5	1
	Part-B $(5 \times 8 = 40 \text{ Marks})$				
11. a)	What is data structure? Explain the types of data structures.	4	1	1	1
b)	Write an algorithm to insert an element in the given single linked list.	4	2	1	1
12. a)	What is stack? Write and explain algorithms to implement stack by using array.	4	2	2	1
b)	Evaluate the postfix expression 3 4 * 2 5 * +. Show the stack contents in the evaluation.	4	3	2	1,2
13. a)	A	4	3	3	1
	B C F				
	6				
	Represent above tree with an array.				

	b)	a	4	3	3	1,2
		b e				
		Traverse the above binary tree by preorder traversal technique.				
14.	a)	1 2 5	4	3	4	1,2
		Apply DFS traversal Technique to above graph with starting vertex 1.				
	b)	Compare and Contrast the BFS and DFS traversal techniques.	4	2	4	1,2
15.	a)	Apply Binary search algorithm to the following input 10, 20 30,40,50,60 for the key elements i) 50 ii) 15.	4	3	5	1,2
	b)	Apply insertion sort algorithm to following input: 10 20, 5, 15, 25, 18, and 21. Show the output after each iteration.	4	3	5	1
16.	a)	Outline about the doubly linked list with an example.	4	2	1	1
	b)	Outline how a linked list can be used to implement a stack.	4	2	2	1
17.		Answer any two of the following:				
	a)	7 9 9 9 5 11 5	4	3	3	1,2
		Traverse the above binary tree with post order traversal technique.				
	b)	V ₁ V ₂ V ₃ V ₄	4	3	4	1,2
		Apply BFS algorithm to above graph with the starting vertex V_1 .				
	c)	Apply bubble sort algorithm to the following input: 10, 40, 70, 30, 50, 20, 80, and 60. Show the output after each iteration.	4	3	5	1,2

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	36%
iii)	Blooms Taxonomy Level - 3 & 4	44%